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Abstract
In designing an ERP study, researchers must choose how many trials to include, balancing
the desire tomaximize statistical power and the need tominimize the length of the recording
session. Recent studies have attempted to quantify the minimum number of trials needed to
obtain reliable measures for a variety of ERP components. However, these studies have
largely ignored other variables that affect statistical power in ERP studies, including sample
size and effect magnitude. The goal of the present study was to determine whether and how
the number of trials, number of participants, and effect magnitude interact to influence sta-
tistical power, thus providing a better guide for selecting an appropriate number of trials.
We used aMonte Carlo approach to measure the probability of obtaining a statistically sig-
nificant result when testing for (a) the presence of an ERP effect, (b) within-participant
condition differences in an ERP effect, and (c) between-participants group differences in an
ERP effect. Each of these issues was examined in the context of the error-related negativity
and the lateralized readiness potential. We found that doubling the number of trials recom-
mended by previous studies led to more than a doubling of statistical power under many
conditions. Thus, when determining the number of trials that should be included in a given
study, researchers must consider the sample size, the anticipated effect magnitude, and the
noise level, rather than relying solely on general recommendations about the number of tri-
als needed to obtain a “stable”ERPwaveform.
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1 | INTRODUCTION

ERPs are small relative to other signals in the EEG and there-
fore are not typically visible on a single trial. Instead, ERPs
are isolated from the EEG by averaging over many instances
of a particular type of event. Averaging increases the signal-
to-noise ratio of the data by reducing the contribution of any
voltage fluctuations that are not time-locked to the event of
interest, allowing the event-related brain activity to become
larger than the noise. The signal-to-noise ratio improves as a
function of the square root of the number of trials included in
the average (Luck, 2014). All else being equal, the more trials
that are included in the average, the better the quality of the
data. However, there are practical limits on the number of tri-
als that can be presented in an experiment. For example,

participants can become fatigued or fidgety if an experiment
is too long, which can increase the noise level in the data and
negatively impact performance on the task. Thus, it is neces-
sary to optimize the number of trials included in an experi-
ment by balancing the tradeoff between the quality of the data
(which impacts the ability to detect a significant effect) and
the amount of time and resources spent collecting the data.

The decision about how many trials to include in a given
ERP experiment has typically been made on the basis of tradi-
tion or anecdotal evidence from previous research. More
recently, studies have attempted to provide specific, data-
driven guidelines for how many trials should be included in
an ERP experiment. These studies have examined several
widely used ERP components, including the error-related
negativity (ERN), error positivity (Pe), N100, N200, vertex
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positive potential (VPP)/N170, mismatch negativity (MMN),
feedback-related negativity (FRN), late positive potential
(LPP), and P300 (Cohen & Polich, 1997; Duncan et al., 2009;
Fischer, Klein, & Ullsperger, 2017; Huffmeijer, Bakermans-
Kranenburg, Alink, & van IJzendoorn, 2014; Larson, Bald-
win, Good, & Fair, 2010; Marco-Pallares, Cucurell, M€unte,
Strien, & Rodriguez-Fornells, 2011; Olvet & Hajcak, 2009;
Pontifex et al., 2010; Rietdijk, Franken, & Thurik, 2014;
Segalowitz & Barnes, 1993; Steele et al., 2016; Thigpen,
Kappenman, & Keil, 2017). The general approach of these
studies has been to take the data from an experiment with a
particular number of trials and simulate experiments with
smaller numbers of trials by subsampling from the original
data set. This makes it possible to determine the minimum
number of trials that are required to obtain an ERP that is as
stable and reliable as the ERP from the available full sample
of trials. The similarity between averages with different num-
bers of trials has been quantified in a variety of ways, such as
by comparing the correlation among the ERPs or measuring
the internal reliability of the averages (e.g., Olvet & Hajcak,
2009). Some studies have also focused on how the number of
trials used to calculate an ERP affects its psychometric prop-
erties, including test-retest reliability (Huffmeijer et al., 2014;
Larson et al., 2010; Segalowitz & Barnes, 1993), internal con-
sistency (Thigpen et al., 2017), and reliability across different
age groups (Marco-Pallares et al., 2011; Pontifex et al.,
2010). The overall goal of these studies has been to determine
the minimum number of trials necessary to obtain a reliable
version of the particular ERP component examined.

For large ERP components, these studies have generally
concluded that a relatively small number of trials is adequate.
For example, several studies have concluded that stable
grand-average ERPs can be obtained with 10 or fewer trials
for the ERN (Larson et al., 2010; Olvet & Hajcak, 2009;
Pontifex et al., 2010; Steele et al., 2016; see Fischer et al.,
2017, for a recommendation of at least 15 trials). This con-
clusion was based on the calculated stability of the ERN,
generally defined as a high correlation between ERPs aver-
aged over relatively few trials and ERPs averaged using
more trials. However, as noted by Gehring, Liu, Orr, and
Carp (2012, p. 278), “this does not speak to the ability of
standard analyses to find between-condition or between-
group differences.” This point has also been made by a
recent study, in which the ability to detect a between-groups
difference on the ERN was examined as a function of the
number of trials included in the ERP average and the error
rate across groups (Duncan et al., 2009; Fischer et al., 2017).
The study by Fischer et al. offered some initial evidence that
specific recommendations that are based on tests of ERP sta-
bility may not be appropriate as guidelines for detecting dif-
ferences between groups. Specifically, they found that larger
numbers of trials were necessary to obtain appropriate statis-
tical power to detect significant differences between groups

compared with number-of-trial estimates obtained from a
simple examination of stability.

This is a significant issue, as it is not the goal of most
ERP studies to determine whether an ERP component is pres-
ent or absent. Instead, the aim of most ERP studies is to deter-
mine whether an ERP differs across individuals, conditions,
and/or groups. Such studies typically examine much smaller
differences than simple comparisons of correct versus error
trials (for the ERN) or rare versus frequent trials (for the
P300). Thus, a critical question concerns how the number of
trials (along with the sample size and effect size) impacts the
ability to detect statistically significant between-conditions or
between-groups effects. In other words, statistical power for
the effect of interest is usually the most important considera-
tion when determining the number of trials necessary for a
given ERP study, yet this has not been examined by most of
the previous work in this area. Framing this issue in terms of
statistical power is particularly important given recent demon-
strations that neuroscience studies tend to be underpowered,
creating the double-pronged problem of decreased likelihood
of detecting an effect and overestimation of effects that are
detected (Button et al., 2013; Groppe, 2017).

An important conclusion that one might draw from previ-
ous studies of the number of trials is that ERP researchers
can collect data from relatively small numbers of trials with-
out any practical cost to data quality (Cohen & Polich, 1997;
Duncan et al., 2009; Fischer et al., 2017; Huffmeijer et al.,
2014; Larson et al., 2010; Marco-Pallares et al., 2011; Olvet
& Hajcak, 2009; Pontifex et al., 2010; Rietdijk et al., 2014;
Segalowitz & Barnes, 1993; Steele et al., 2016; Thigpen
et al., 2017). For example, a researcher may read that “P300
amplitude stabilizes with approximately 20 target trials for
all conditions” (Cohen & Polich, 1997, p. 249) or that the
“ERN and Pe may be accurately quantified with as few as
six to eight commission error trials across the life span”
(Pontifex et al., 2010, p. 767). The researcher who reads
such statements may then assume that there is no point in
obtaining any more than 20 trials in a P300 study or 6–8 tri-
als in an ERN study, even if more trials could be reasonably
obtained. However, most previous research on this topic has
not directly examined the effect of the number of trials on
statistical power or assessed whether this interacts with the
sample size and the effect magnitude.1 Therefore, the

1In this article, we use the term sample size to refer to the number of par-
ticipants in a study (and not the number of trials sampled from the hypo-
thetical population of trials for each participant). We use the term effect
magnitude to refer to the absolute size of an effect in microvolts (as
opposed to the term effect size, which typically refers to a quantity that is
scaled by the amount of variability). As the number of trials per partici-
pant increases or decreases, this will change the effect size for a given
effect magnitude. For example, a 1 mV effect might lead to an effect size
of 0.8 (Cohen’s d) with a large number of trials and 0.4 with a small
number of trials, and this in turn would impact the statistical power.
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guidelines from these previous studies may lead our hypo-
thetical researcher to underestimate the number of trials
needed to obtain statistically significant effects. As a result,
considerable time and resources may be wasted conducting
studies that have little chance of yielding significant effects.
On the other hand, if there truly is little or no value in includ-
ing more than 20 trials per condition in a P300 experiment or
more than 6–8 error trials per condition in an ERN experi-
ment, then this would allow researchers to design studies that
would be infeasible with larger numbers of trials. Thus, it is
important to determine whether other aspects of experimental
context need to be considered when determining the optimal
number of trials for a given study.

1.1 | Current study

The primary goal of the current study was therefore to
explore the effect of the number of trials on statistical power
and how this interacts with the sample size and effect magni-
tude. If the number of trials required to obtain statistically
significant results varies widely depending on these other
factors, then this will undermine the idea that we can use
simple guidelines for the number of trials in an ERP experi-
ment that can be applied broadly across very different types
of studies. This is a vitally important issue for determining
how future ERP studies are designed.

To address this issue, we systematically manipulated three
key factors that play a role in determining statistical power:
the number of trials contributing to the averaged ERP, the
sample size, and the effect magnitude. We examined the influ-
ence of these factors on the probability of obtaining a statisti-
cally significant result (a) when testing for the presence of an
ERP effect (e.g., a difference in ERN amplitude between error
trials and correct trials), (b) when testing for within-
participant differences across conditions in an ERP effect, and
(c) when testing for between-groups differences in an ERP
effect. To address these questions, we used a Monte Carlo
approach to simulate experiments with various numbers of tri-
als, numbers of participants, and effect magnitudes by sub-
sampling trials and participants from a large data set. By
simulating 1,000 experiments for each given set of parame-
ters, we were able to estimate the probability of obtaining a
statistically significant result (i.e., the statistical power) for
each combination of parameters. Our goal was not simply to
show that each of these factors impacts statistical power, but
instead to determine how they interact in determining power.
In other words, we examined how the effect of increasing the
number of trials per participant depends on the sample size
and the effect magnitude. This made it possible to determine
whether it is valid to assume that the point at which it is no
longer worth increasing the number of trials is relatively con-
stant across studies or, alternatively, whether different studies

require substantially different numbers of trials to achieve the
same level of statistical power.

To preview the results, we found that statistical power
increased as the number of trials per participant increased,
even beyond the point needed to achieve a “stable” ERP
waveform. For example, statistical power more than doubled
when we increased the number of trials from 8 to 16 in simu-
lated ERN experiments with small effects and small numbers
of participants. Generally speaking, increasing the number of
trials was most helpful at low and intermediate levels of sta-
tistical power (which, in turn, was determined by the size of
the effect and the number of participants). However, when
power was already high with a relatively small number of tri-
als (because of a large effect size or large number of partici-
pants), increasing the number of trials yielded relatively little
increase in power (a ceiling effect).

2 | METHOD

2.1 | ERP components

We focused on two ERP components, the ERN and the later-
alized readiness potential (LRP). The ERN was selected
because it is a robust effect that has recently been the subject
of several reliability studies (Fischer et al., 2017; Larson
et al., 2010; Olvet & Hajcak, 2009; Pontifex et al., 2010;
Steele et al., 2016). The LRP was selected because it is typi-
cally a smaller effect and requires a relatively large number
of trials to detect, thus allowing a broader range of trial
counts and effect magnitudes to be examined. These two
ERP effects were also selected because they can be isolated
using a single task, allowing us to use data from a single
experiment for all analyses, thereby eliminating differences
in data quality, noise level, participant alertness, etc., across
analyses. The data set included a relatively large number of
participants (N5 40), making it possible to examine a broad
range of sample sizes.

The ERN is typically observed in response-locked wave-
forms as more negative voltage on error trials relative to cor-
rect trials (for a recent review, see Gehring et al., 2012).
ERN onset is closely tied to the execution of the error (within
�50 ms) and is maximal at frontocentral electrode sites. The
difference in amplitude between error trials and correct trials
is relatively large (typically 5–15 mV), and is often quantified
with a relatively small number of error trials (which is some-
times necessary given the relatively small number of errors
that participants make in the tasks that are commonly used to
elicit the ERN).

The LRP is an ERP that is associated with the selection
and preparation of a lateralized manual response (see Eimer,
1998; Smulders & Miller, 2012, for reviews). It is a
negative-going deflection observed at electrode sites over
motor cortex and is larger at electrode sites contralateral to
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the response hand compared with the ipsilateral sites. The
LRP can be seen in both stimulus-locked or response-locked
averages, and it typically onsets shortly before a response is
made; in the current study, we focus on stimulus-locked LRP
waveforms as a contrast for the response-locked ERN analy-
sis. The neural activity associated with response preparation
can be isolated by taking advantage of the contralateral orga-
nization of motor processing in the brain. Specifically, the
LRP is isolated by subtracting activity recorded at electrode
sites ipsilateral to the response hand from activity recorded at
electrode sites contralateral to the response hand. This yields
just the activity related to preparation of the motor response.
Unlike the ERN, the LRP is a relatively small component
(typically 1–4 mV), and it is usually quantified using aver-
ages of between 50–100 trials per response hand (Smulders
& Miller, 2012).

2.2 | Participants

Forty undergraduate students between the ages of 18 and 30
with normal color perception and no history of neurological
injury or disease were tested (25 female). Of these 40 partici-
pants, 8 participants were excluded from the ERN analyses
for having too few (<16) artifact-free error trials, leaving 32
participants; 1 participant was excluded from the LRP analy-
ses for having an error rate over 50%, leaving 39 participants.
The study was approved by the University of California,
Davis Institutional Review Board, and participants received
monetary compensation.

2.3 | Stimuli and task

Participants completed a modified version of the Eriksen
flanker task (Eriksen & Eriksen, 1974).2 An example
stimulus display is presented in Figure 1a. Each trial con-
sisted of a set of five arrowhead stimuli presented for 200 ms
in black on a light gray background. Each arrowhead sub-
tended 18 3 18 of visual angle. The central arrowhead was
designated the target stimulus, and participants made either a
left-hand or right-hand button press on a Logitech gamepad
corresponding to the direction of the central arrowhead. The
flanking arrowheads either pointed in the same direction
(congruent trials) or the opposite direction (incongruent tri-
als) as the target stimulus, resulting in four sets of stimuli:
<<<<<, >>>>>, <<><<, and >><>>. The direc-
tions of the target and flankers were chosen randomly on
each trial, with leftward- and rightward-pointing targets each
occurring on half of the trials, and congruent and incongruent
flankers each occurring on half of the trials. Stimuli were

presented over a continuously visible central white fixation
point (0.158 of visual angle), with a jittered stimulus onset
asynchrony of 1,400–1,600 ms (rectangular distribution,
average of 1,500 ms). Participants completed 400 trials with
a participant-controlled break provided every 40 trials to
allow participants to rest their eyes. To ensure an adequate
number of error trials, feedback was presented during the
break screens reading “Try to respond a bit faster” if the error
rate from the preceding block was below 10%, or “Try to
respond more accurately” if the error rate from the preceding
block exceeded 20%; if the error rate was between 10–20%,
a message of “Good job!” was presented.

2.4 | EEG recording and processing
procedures

The continuous EEG was recorded using a Biosemi Active-
Two recording system (Biosemi B.V., Amsterdam, The
Netherlands). The electrodes were mounted in an elastic cap
using a subset of the International 10/20 system sites (FP1,
FP2, F3, F4, F7, F8, FC3, FC4, C3, C4, C5, C6, P3, P4, P7,
P8, P9, P10, PO3, PO4, PO7, PO8, O1, O2, Fz, FCz, Cz,
CPz, Pz, Oz; see Figure 1b). A common mode sense elec-
trode was located at site PO1, with a driven right leg elec-
trode located at site PO2. The horizontal electrooculogram
(EOG) was recorded from electrodes placed lateral to the
external canthi and was used to detect horizontal eye move-
ments; the vertical EOG was recorded from an electrode

FIGURE 1 (a) Example stimulus display for modified Eriksen
flanker task. (b) The electrode recording montage

2In addition to the experiment described in the present manuscript, par-
ticipants completed five additional short ERP tasks in the same testing
session. The data from these tasks will be published separately.
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placed below the right eye and was used to detect eyeblinks
and vertical eye movements. The EEG and EOG were low-
pass filtered using a fifth order sinc filter with a half-power
cutoff at 204.8 Hz and digitized at 1024 Hz with 24 bits of
resolution. The single-ended EEG and EOG signals were
converted to differential signals offline, referenced to the
average of the left and right mastoids.

Signal processing and analysis was performed in MAT-
LAB using EEGLAB toolbox (Delorme & Makeig, 2004)
and ERPLAB toolbox (Lopez-Calderon & Luck, 2014). The
EEG was downsampled to 256 Hz and high-pass filtered
with a cutoff of 0.1 Hz (noncausal Butterworth impulse
response function, half-amplitude cutoff, 12 dB/oct roll-off).
Portions of EEG containing large muscle artifacts or extreme
voltage offsets (identified by a semiautomatic ERPLAB algo-
rithm) were removed, as well as all break periods longer than
2 s. Independent component analysis (ICA) was then per-
formed for each participant to identify and remove compo-
nents that were clearly associated with eyeblinks as assessed
by visual inspection of the waveforms and the scalp distribu-
tions of the components (Jung et al., 2000). The ICA-
corrected EEG data were segmented for each trial as follows.
For the ERN, trials were segmented beginning 600 ms prior
to the onset of the response and continuing for 400 ms post-
response; baseline correction was performed using the 2400
to 2200 ms window prior to response onset. For the LRP,
trials were segmented beginning 200 ms prior to the onset of
the stimulus through 800 ms poststimulus; baseline correc-
tion was performed using the 200 ms prior to stimulus onset.

Trials containing artifacts were removed by means of
automated ERPLAB algorithms, including voltage offsets
greater than6 200 mV, and eye movements larger than 0.18
of visual angle that were detected using the step function
described by Luck (2014). For the stimulus-locked LRP, tri-
als that contained an eyeblink during the presentation of the
stimulus were also excluded. Trials with RTs less than 200
ms or greater than 1,000 ms were excluded from all analyses.
Trials with incorrect behavioral responses were excluded
from the LRP analysis.

Time windows and measurement sites were chosen a pri-
ori on the basis of prior research (see Gehring et al., 2012;
Smulders & Miller, 2012). To isolate the ERN, correct trials
and error trials were averaged separately, and an error-
minus-correct difference wave was created. ERN amplitude
was quantified as the mean amplitude from 0–100 ms rela-
tive to the response at electrode Fz. The LRP was isolated by
creating separate ERP waveforms for the hemisphere that
was contralateral to the response and the hemisphere that
was ipsilateral to the response, collapsed across compatible
and incompatible conditions. From these waveforms,
contralateral-minus-ipsilateral difference waveforms were
created, averaged across left- and right-hand responses. LRP

amplitude was measured from the difference waves as the
mean amplitude from 300–500 ms at electrode C3/4.

2.5 | Monte Carlo analyses

We conducted three sets of simulated experiments. For each,
Monte Carlo analyses were used to simulate a large number
of experiments by randomly sampling subsets of trials and
participants from our data set. Student’s t test was used to
determine whether a given simulated experiment resulted in
a significant difference between conditions (using paired t
tests) or between groups (using independent samples t tests).
To estimate the probability of obtaining a statistically signifi-
cant effect (alpha5 .05) for a given combination of parame-
ters (sample size, number of trials, and effect magnitude),
1,000 experiments were simulated for each combination. For
all analyses, we used real data collected from our partici-
pants. For the within-participant and between-participants
analyses, we added artificial effects so that the true effect
magnitudes would be known (see Kiesel, Miller, Jolicœur, &
Brisson, 2008; Smulders, 2010; Ulrich & Miller, 2001, for
similar approaches). This approach is ideal because it uses a
combination of real EEG data (so that the noise properties
are realistic) and artificially induced experimental effects (so
that the actual truth is known).

3 | RESULTS

3.1 | Noise levels and basic ERP results

The quality of the EEG data impacts the ability to detect a
statistically significant result, and we therefore quantified the
noise level of our data. The noise level differs across experi-
ments as a function of the laboratory environment, including
the EEG equipment used, the electrical shielding in the test-
ing space, the electrode impedances, and the temperature and
humidity of the recording environment (Kappenman &
Luck, 2010). To quantify the noise level in our data set, we
computed the amplitude density at each frequency ranging
from 1 to 100 Hz using the fast Fourier transform (FFT).
Although the raw EEG contains both signal and noise, the
noise is much larger than the signal, especially at very low
and very high frequencies, so the amplitude at a given fre-
quency provides an approximate measure of the noise at that
frequency. To provide one set of noise quantifications for
both the ERN and LRP, FFTs were calculated using the full
data set (N5 40). FFTs were computed on zero-padded 5-s
segments of the continuous EEG with 50% overlap, after
downsampling and applying a high-pass filter as described
above. Segments containing large artifacts (over 200 mV)
were excluded, and then the amplitude spectrum was aver-
aged across segments, electrode sites, and participants. The
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resulting grand-average amplitude density spectrum is shown
in Figure 2.

Additional methods of visualizing data quality for each
ERP component are described in detail below (see Figures 3
and 4).

3.1.1 | ERN

Figure 3a shows the grand-average ERP waveforms for cor-
rect and incorrect trials, averaged across all participants
included in the ERN analyses (N5 32 with at least 16
artifact-free error trials); the error-minus-correct difference
waveform is shown in Figure 3b. Consistent with the large
ERN literature, error responses elicited a larger negative
deflection than correct responses, beginning shortly before
response onset and continuing for about 100 ms postres-
ponse. A paired t test indicated that this was a significant dif-
ference, t(31)5 8.56; p< .0001; h25 .7. The average error-
minus-correct mean amplitude difference was 28.02 mV
(SEM5 0.93). Panel (c) shows the average standard error of
the mean. That is, the standard error of the mean across trials
was calculated for each participant at each time point in each
ERP waveform, and these values were then averaged across
participants.

To visualize the noise level more directly, we imple-
mented the plus-minus averaging approach (Schimmel,
1967). This approach subtracts the ERP while leaving the
noise by inverting the waveform on half of the trials. Specifi-
cally, all artifact-free error trials for each participant in the
ERN analysis were separated into two sets for averaging,
with one average for odd-numbered trials and one for even-
numbered trials. The average waveform for odd-numbered

(a) (b)

(c) (d)

FIGURE 3 ERNwaveforms. (a) Response-locked grand-average ERPwaveforms for error and correct trials at electrode Fz. (b) Response-locked
grand-average difference waveform (error minus correct trials). A low-pass filter was applied offline before plotting (noncausal Butterworth impulse
response function, half-amplitude cutoff5 30Hz, 12 dB/oct roll-off). (c) Response-locked grand-average ERPwaveforms for error and correct trials at
electrode Fz. Standard error of the mean is indicated by shaded lines. (d) Plus-minus averages for the error trials, which remove the ERP signal but leave
the noise. The grand-average noise waveform is superimposed in bold on the individual participant noise waveforms

FIGURE 2 Amplitude density as a function of frequency, calculated
from fast Fourier transforms (FFTs) of data from all epochs, electrodes,
and participants in the data set. A log scale is used for frequency to make it
easier to visualize the lower frequencies
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error trials was then subtracted from the waveform for even-
numbered error trials for each participant. This effectively
cancels the ERP signal, which should be equivalent between
odd-numbered and even-numbered trials, but leaves the noise
(which is just as large whether or not the waveform is
inverted). Figure 3d overlays the single-participant plus-
minus averages as well as the average across participants for
the error trials.

3.1.2 | LRP

Figure 4a shows the grand-average contralateral and ipsilat-
eral waveforms, averaged across all participants included in
the LRP analyses (N5 39); the contralateral-minus-
ipsilateral difference waveform is shown in Figure 4b. Con-
sistent with previous LRP studies, activity at electrode sites
contralateral to the response hand elicited a larger negative
voltage deflection than electrode sites ipsilateral to the
response hand, and this effect was present from approxi-
mately 300–500 ms after stimulus onset. A paired t test indi-
cated that this was a significant difference, t(38)5 10.98;
p< .0001; h25 .76. The average contralateral-minus-
ipsilateral mean amplitude difference was 21.31 mV

(SEM5 0.12). Figure 4c shows the average standard error of
the mean, and Figure 4d shows the plus-minus average as a
means of visualizing the noise.

3.2 | Internal reliability

To assess the internal reliability of the ERN and LRP as a
function of the number of trials and the sample size, we com-
puted Cronbach’s alpha. Specifically, for each combination
of parameters, we calculated Cronbach’s alpha for each par-
ticipant. We then averaged the resulting values across partici-
pants within a simulated experiment and across all 1,000
simulated experiments for each combination of number of
trials and sample size. The results are plotted in Figure 5.
These results replicate the findings of previous studies
(Fischer et al., 2017; Larson et al., 2010; Olvet & Hajcak,
2009; Pontifex et al., 2010; Steele et al., 2016), and suggest
that to achieve high internal reliability (Cronbach’s alpha val-
ues of 0.7–0.9), 8 trials is sufficient for the ERN and 45 trials
is sufficient for the LRP. However, the goal of the present
study was to determine whether statistical power is improved
by increasing the number of trials beyond this level, which is
addressed in the following sections.

(a) (b)

(c) (d)

FIGURE 4 LRPwaveforms. (a) Stimulus-locked grand-average contralateral and ipsilateral ERPwaveforms collapsed across electrodes C3 and C4.
(b) Stimulus-locked grand-average difference waveform (contralateral minus ipsilateral trials). A low-pass filter was applied offline before plotting (non-
causal Butterworth impulse response function, half-amplitude cutoff5 30Hz, 12 dB/oct roll-off). (c) Stimulus-locked grand-average contralateral and ipsi-
lateral waveforms at electrode C3/4. Standard error of the mean is indicated by shaded lines. (d) Plus-minus averages for the LRP, which remove the ERP
signal but leave the noise. The grand-average contralateral-minus-ipsilateral noise waveform is superimposed in bold on the individual participant noise
waveforms
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3.3 | Probability of obtaining a statistically
significant ERP effect

Our first set of Monte Carlo analyses assessed the probability
of detecting the presence of a significant ERN or LRP
(which is a “low bar” for assessing the number of trials).
Subsequent analyses will focus on detecting within- or
between-groups differences in ERP and LRP amplitude.

We simulated experiments with varying numbers of trials
and numbers of participants. In our ERN analyses, we simu-
lated experiments with 6, 8, 10, 12, and 14 artifact-free error
trials, as well as with all available error trials (mean: 50.29;
range: 16–87). For the LRP analyses, we simulated experi-
ments with 30, 45, 60, 75, and 90 artifact-free trials, as well
as with all available trials (range: 91–195). For each number
of trials, we simulated experiments with 12, 16, 20, 24, 28,
and 32 participants.

3.3.1 | ERN

Figure 6a shows the probability of obtaining a significant
ERN (i.e., a nonzero difference in amplitude between error
trials and correct trials) as a function of the number of trials
included in the error-trial averages. The correct-trial averages
included all available trials (because the number of correct
trials is typically so great that it does not meaningfully
impact the results). The statistical power for determining
whether error and correct trials differ in ERN amplitude was
extremely high even with a small number of trials and a

small number of participants, so variations in these factors
had very little impact on statistical power (a ceiling effect).
However, very few studies are designed to simply determine
whether the ERN differs between error trials and correct tri-
als, so these findings do not indicate that most experiments
could use the minimum number of trials and participants
examined here.

3.3.2 | LRP

Figure 6b shows the probability of obtaining a significant
LRP (difference between activity contralateral vs. ipsilateral
to the response) as a function of the number of trials and the
sample size. As with the ERN, power was at ceiling for this
simple comparison, so varying the number of trials and par-
ticipants had very little effect.

3.4 | Detecting significant effects in within-
participant experiments

We next simulated experiments in which each participant is
tested in two conditions, allowing us to assess the probability
of detecting the presence of a within-participant condition
difference. These simulations would be analogous to an
experiment examining, for example, differences in ERN
amplitude under conditions of low versus high emotional
arousal, where the same participants experience both the
low- and high-arousal conditions. To simulate an effect of a
known size in the magnitude of the ERN, we randomly
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FIGURE 5 (a) Internal reliability of the ERN at Fz as a function of number of trials in theMonte Carlo simulations, measured by Cronbach’s alpha.
(b) Internal reliability of the LRP at C3/4 as a function of number of trials and sample size in theMonte Carlo simulations, measured by Cronbach’s alpha.
Both panels show values forN5 32, the largest sample size tested in ourMonte Carlo analyses. Values of Cronbach’s alpha above 0.9 are indicative of
excellent internal reliability, between 0.7 and 0.9 of high internal reliability, between 0.5 and 0.7 of moderate internal reliability, and below 0.5 of low
internal reliability (Hinton Perry, Brownlow,McMurray, & Cozens, 2004)
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divided each participant’s error trials into two sets of 8 errors
each (8 errors per set being the maximum possible, because
some participants had as few as 16 artifact-free error trials).
To simulate this effect with 16 trials, we used the well-
validated bootstrap approach (Di Nocera & Ferlazzo, 2000;
Efron & Tibshirani, 1994), in which each participant’s error
trials are divided into two sets of 16 trials each, sampling
with replacement from the 16 available trials. In other words,
we sampled 16 trials with replacement from the 16 available
trials for a given participant to create the trials for one simu-
lated condition, and then we repeated this process with a
new random sample of 16 trials to create the trials for the
other simulated condition. It has been well established that
sampling with replacement in this manner provides a good
approximation of sampling without replacement from an infi-
nite population of trials (Singh, 1981). To simulate a differ-
ence of X mV between the two groups of waveforms, a
voltage of 1=2X was subtracted from the mean amplitude
from 0–100 ms postresponse at electrode Fz from one set of
waveforms and added to the other (e.g., to simulate a 4 mV
difference between conditions, 2 mV was added to one set of
trials and subtracted from the other).

In these simulations, we are assuming that all participants
respond equivalently to the experimental manipulation and
that all of the variance is a result of (a) the finite number of
trials being averaged together, and (b) condition-independent
individual differences in ERN amplitude. In real

experiments, some variance will also arise from individual
differences in the response to the experimental manipulation.
However, when the number of trials is small, most of the var-
iance presumably comes from noise in the single-trial EEG
data that is not eliminated. A particularly high degree of
intertrial variability might be expected for experiments in
which stimuli are not identical within a condition (e.g., lan-
guage experiments in which different words comprise the
stimuli for a given condition). We would also expect some
additional variance to arise from differences across partici-
pants in biophysical factors (e.g., cortical folding patterns;
Luck, 2014). Thus, for the sake of simplicity, we chose to
ignore individual and intertrial differences in the size of the
experimental effect in the present simulations.

We simulated experiments with differences of 1, 2, 3, 4,
5, 6, and 7 mV in the magnitude of the ERN between condi-
tions. For each simulated experiment, the error trials in the
two conditions differed in amplitude by this amount (plus or
minus noise), and we determined whether the observed dif-
ference was statistically significant (comparing just the error
trials for the two conditions). This procedure was then iter-
ated 1,000 times with different random selections of trials
and participants so that we could estimate the probability of
obtaining a significant difference between conditions with a
given number of trials and participants.

For the LRP, we conducted an analogous analysis by ran-
domly dividing each participant’s trials into two sets of 45

FIGURE 6 (a) Probability of obtaining a significant ERN (difference between the ERP on error versus correct trials) as a function of number of trials
and sample size in theMonte Carlo simulations. (b) Probability of obtaining a significant LRP (difference between the contralateral versus ipsilateral ERP
waveforms) as a function of number of trials and sample size in theMonte Carlo simulations

BOUDEWYN ET AL. | 9 of 16



trials or two sets of 90 trials (sampling with replacement)
and computing the contralateral minus ipsilateral difference
for each to simulate two different LRP conditions. These
simulations would be analogous to an experiment examining,
for example, differences in LRP amplitude between congru-
ent and incongruent trials in a flanker task. Voltage was sub-
tracted from the mean amplitude from 300–500 ms at
electrode C3/4 for one set of waveforms and added to the
other (as described above), with simulated differences of
0.25, 0.5, 0.75, 1.0, 1.25, 1.5, and 1.75 mV between the two
LRP conditions. We then performed a statistical comparison
to determine whether the difference waves were significantly
different in amplitude between the two simulated conditions.

In both the ERN and LRP analyses, we assessed sample
sizes of 12, 16, 20, 24, 28, and 32 participants for each simu-
lated difference in effect magnitude and number of trials.
Thus, we factorially varied the number of trials, the number
of participants, and the magnitude of the difference across
conditions.

3.4.1 | ERN

Figure 7 shows the probability of obtaining a statistically sig-
nificant difference in ERN amplitude between two conditions
(i.e., the statistical power) as a function of the number of tri-
als, the number of participants, and the magnitude of the con-
dition difference. All three factors interactively influenced

the probability of obtaining a significant result. With 16 trials
per condition, power was high (above 0.8), independent of
the number of participants as long as the experimental effect
was at least 3 mV. With only 8 trials per condition, however,
power for detecting a 3 mV effect increased dramatically as
the number of participants increased, reaching 0.8 only when
the experiment included 32 participants. With a fairly typical
N of 20 participants, power for detecting this 3 mV effect
rose from only approximately 0.5 with 8 error trials to nearly
1.0 with 16 error trials. Similarly, with a relatively large N of
32 participants, power for detecting a somewhat smaller 2
mV effect rose from approximately 0.4 with 8 error trials to
above 0.9 with 16 error trials. Thus, doubling the number of
trials can more than double the statistical power under some
conditions.

With a small (but very plausible) difference of 1 mV
between conditions and only 8 error trials per participant,
power to detect the difference between conditions was low
and increased very gradually as the number of participants
increased from 12 to 32. This suggests that an extraordinarily
large number of participants would be needed to reliably
detect small differences in ERN amplitude with only 8 error
trials per participant. However, power for detecting this 1 mV
effect rose steadily as the number of participants increased
when the experiment included 16 error trials per participant,
suggesting that reasonable levels of power could be achieved
with a realistic number of participants.

FIGURE 7 Probability of obtaining a significant within-participant difference in ERN amplitude between two conditions as a function of number of
trials and sample size inMonte Carlo simulations of experiments with between-conditions differences of 1–7 mV.Note that, for this analysis, sample size is
plotted on the x axis
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Thus, although 8 trials was sufficient to obtain high lev-
els of internal reliability (defined as Cronbach’s alpha> 0.7)
and was sufficient to yield acceptable levels of power for
detecting very large between-conditions differences in ERN
amplitude, increasing the number of trials to 16 dramatically
increased the statistical power to detect small- or medium-
sized differences in ERN amplitude. More broadly, statistical
power was determined interactively by the number of trials,
the number of participants, and the magnitude of the
between-conditions amplitude difference.

3.4.2 | LRP

Figure 8 shows the probability of obtaining a statistically sig-
nificant difference in LRP amplitude between two conditions
as a function of the number of trials, the number of partici-
pants, and the magnitude of the difference between the simu-
lated conditions. The results closely paralleled the ERN
results shown in Figure 7, with all three factors interacting to
determine statistical power. With an effect of 1.5–1.75 mV
that approximately doubles the LRP amplitude, the power to
detect the effect was near ceiling no matter whether the
experiment included 45 or 90 trials per participant, even with
only 12 participants. However, increasing the number of tri-
als from 45 to 90 approximately doubled the statistical power
under certain conditions (e.g., when the simulated experi-
ment involved 20 participants and the conditions differed by

0.5 mV). Thus, increasing the number of trials beyond the
number needed to achieve high internal reliability led to sub-
stantial increases in statistical power for detecting small to
medium differences in LRP amplitude.

3.5 | Detecting significant differences between
groups

To assess the probability of detecting the presence of a
between-groups difference in the ERN and LRP, we con-
ducted a third set of Monte Carlo analyses. To simulate a
between-participants difference in the magnitude of the
ERN, we divided our sample into randomly selected groups
of 16 participants each. To simulate a larger sample size of
32 participants per group, we used the bootstrap approach
and randomly divided our sample into two groups of 32 par-
ticipants each, sampling with replacement from the 32 avail-
able participants. Again, this is a well-validated approach
that provides a good approximation of sampling without
replacement from an infinite population of participants (Di
Nocera & Ferlazzo, 2000; Efron & Tibshirani, 1994). To
simulate a difference of X mV between the two groups, a
voltage of 1=2X was subtracted from the average error-minus-
correct difference in mean amplitude in the ERN time win-
dow for each participant in one group and added to this dif-
ference for each participant in the other group (e.g., to
achieve a 4 mV group difference, 2 mV was added to the

FIGURE 8 Probability of obtaining a significant within-participant difference in LRP amplitude between two conditions as a function of number of
trials and sample size inMonte Carlo simulations of experiments with between-conditions differences of 0.25–1.75 mV.Note that, for this analysis, sample
size is plotted on the x axis
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amplitudes for one group of participants and subtracted from
the other). We simulated experiments with 1, 2, 3, 4, 5, 6,
and 7 mV differences in the magnitude of the between-
groups difference. The analogous simulations for the LRP
used differences of 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, and 1.75
mV; the appropriate voltages were added to or subtracted
from the mean contralateral-minus-ipsilateral difference for
each participant, and then the resulting difference scores
were submitted to the statistical analyses. For the ERN, we
simulated experiments with 6, 8, 10, 12, 14 error trials, and
all available error trials. For the LRP, we simulated experi-
ments with 30, 45, 60, 75, 90 trials, and all available trials.
Variations in the number of trials were factorially combined
with variations in the number of participants (16 or 32 per
group) and variations in the between-groups amplitude
differences.

3.5.1 | ERN

Figure 9 shows the probability of obtaining a statistically sig-
nificant between-groups difference in ERN amplitude (the
statistical power) as a function of the number of error trials,
the number of participants, and the magnitude of the differ-
ence between groups. All three factors interacted to deter-
mine the statistical power, although the interactions were not
as strong as for the within-participant manipulations shown
in Figure 7. With 16 participants per group, power increased
slowly but steadily as the number of trials increased unless
the effect was so small that power was near floor. With 32

participants per group, power was near ceiling independent
of the number of trials for extremely large between-groups
differences of 6–7 mV, increased slowly but steadily as the
number of trials increased for moderate between-groups dif-
ferences, and remained near floor independent of the number
of trials for very small between-groups differences.

3.5.2 | LRP

Figure 10 shows statistical power for between-groups differ-
ences in LRP amplitude as a function of the number of trials,
the number of participants, and the magnitude of the differ-
ence between groups. As was observed for the within-
participant simulations shown in Figure 8, there were sub-
stantial interactions between these factors in the between-
groups simulations. With very small or very large group dif-
ferences, power remained at floor or ceiling, respectively, as
the number of trials or number of participants increased. For
intermediate group differences, however, power increased
substantially as the number of trials or participants increased.
For example, the power to detect a 0.5 mV group difference
increased dramatically as the number of trials increased
when each group contained 32 participants. In addition,
power saturated rapidly as the number of trials increased for
effects of 0.75 mV or greater with 32 participants per group,
whereas power increased steadily with the number of trials
for group differences of 0.5–1.25 mV with 16 participants per
group.

FIGURE 9 Probability of obtaining a significant difference in ERN amplitude between two groups as a function of magnitude of the difference and
sample size inMonte Carlo simulations of experiments with group differences of 1–7 mV
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4 | DISCUSSION

4.1 | Probability of obtaining a statistically
significant ERP component

In our first set of simulations, we examined how the system-
atic manipulation of number of trials and sample size
impacted the likelihood of observing a statistically significant
overall ERN or LRP effect. That is, for the ERN we exam-
ined the likelihood of finding a statistically significant ampli-
tude difference between error trials and correct trials; for the
LRP, we examined the likelihood of finding a statistically
significant amplitude difference between the hemispheres
contralateral versus ipsilateral to the response hand. Consist-
ent with previous work (Fischer et al., 2017; Larson et al.,
2010; Olvet & Hajcak, 2009; Pontifex et al., 2010; Steele
et al., 2016), the ERN proved to be a robust effect that was
reliably observed even when relatively few trials were
included in the average (see Figure 6a). In addition, the inter-
nal reliability of the ERN reached the “high” range (0.7–0.9)
with only 8 error trials, which also replicates prior results
(Olvet & Hajcak, 2009).

The LRP also proved to be a robust effect. All combina-
tions of sample size and numbers of trials yielded acceptable
likelihoods of statistical significance for determining that an
LRP was present, and 45 trials was sufficient to yield high
levels of internal reliability.

However, it is rarely the goal of an experiment to simply
detect the presence of an ERP. Rather, most ERP experi-
ments are aimed at assessing differences between conditions
and/or between groups of participants, which tend to be
much subtler effects. Therefore, we conducted simulations to
investigate whether and how the number of trials interacted
with the number of participants and the magnitude of the
effect to determine the ability of an experiment to detect
within-participant condition differences and between-
participants group differences.

4.2 | Detecting within-participant condition
differences

Our second set of simulations examined statistical power for
detecting differences in ERN or LRP amplitude across condi-
tions in within-participant experiments. We found clear evi-
dence that power was interactively determined by the
number of trials, the number of participants, and the magni-
tude of the between-conditions difference. Although high
internal reliability was obtained for large-sized effects with 8
trials for the ERN and 45 trials for the LRP, doubling the
number of trials led to substantial increases in the power to
detect small- and medium-sized effects. Indeed, with some
combinations of parameters, doubling the number of trials
effectively doubled the statistical power. However, when the

FIGURE 10 Probability of obtaining a significant difference in LRP amplitude between two groups as a function of magnitude of the difference and
sample size inMonte Carlo simulations of experiments with group differences of 0.25–1.75 mV
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differences in amplitude between conditions were very large,
power was already near ceiling with a small number of trials,
and increasing the number of trials had very little impact on
power under these conditions. Such large effects are rare,
however, and for the effects that are common in within-
participant experiments on the ERN and LRP, increasing the
number of trials beyond 8 ERN trials and 45 LRP trials will
typically yield substantial increases in statistical power. With
even larger numbers of trials, one would eventually reach a
point where power reached asymptote and further increases
in the number of trials would have little impact, but the pres-
ent data set did not have enough trials to determine this
point. Likewise, increasing the number of participants gener-
ally improved statistical power, but had little impact when
the differences in amplitude between conditions were very
large, particularly when the number of trials was large.

4.3 | Detecting group differences

Our third set of simulations examined how statistical power
in between-groups designs varied as a function of the num-
ber of trials, the number of participants, and the magnitude
of the group difference. For the LRP, we again found strong
interactions among these factors. Power increased substan-
tially as the number of trials increased as long as the magni-
tude of the group difference was not so large that power was
at ceiling or so small that power was at floor. However, the
impact of increasing the number of trials was not as large for
the between-group simulations as it was for the within-
participant simulations. The effect of increasing the number
of trials was even weaker for the between-groups ERN simu-
lations, where doubling the number of trials typically
increased the statistical power by 0.2 or less. This does not
appear to be a result of an asymptote: Increasing the number
of trials appeared to produce a gradual but steady increase in
power. Thus, there would be value in increasing the number
of trials in such experiments, but large numbers of trials
might be necessary to reach acceptable levels of power. By
contrast, increasing the number of participants had a rela-
tively dramatic impact on statistical power, for both the ERN
and the LRP. Doubling the number of participants from 16
to 32 substantially increased power, particularly when the
simulated group difference in amplitude was in the interme-
diate range.

It should be noted that the simulated groups in the pres-
ent study did not differ in either noise level or true score var-
iance, as may occur in real-world between-groups
experiments. For example, in comparing a patient group with
a control group, greater noise levels may be present in the
patient data than in the control data, and the patients may
also be intrinsically more variable than the controls above
and beyond any differences in EEG noise. Such differences
in variance between groups may impact the effect that the

number of trials, number of participants, and effect magni-
tude have on statistical power. This is an important direction
for future research to explore. In addition, our analyses
focused on simulations of very simple situations, in which
the mean voltage from a known time window was compared
across two conditions or two groups. It would be useful for
future work to ask how the number of trials impacts more
complex designs and analytical approaches such as multifac-
tor interactions, mass univariate analyses (Groppe, Urbach,
& Kutas, 2011), and mixed-effect modeling (Tibon & Levy,
2015).

It should also be noted that the effects of the number of
trials on statistical power could be viewed in terms of
changes in effect size (e.g., Cohen’s d, which divides the
mean difference between conditions or groups by a measure
of within-condition or within-groups variability). As the
number of trials decreases, the variability increases, which
produces a decrease in both effect size and statistical power.

The present study does not indicate why the effect of
increasing the number of trials was often greater for within-
participant designs than for between-participants designs (or
whether this would generalize to other ERP components,
other paradigms, and other design and analysis parameters).
We speculate that the key factor is the proportion of variance
that is a result of having a finite number of trials and the pro-
portion that is a result of stable individual differences. If the
main source of variance is the number of trials, then increas-
ing the number of trials should produce a large decline in
error variance and therefore a large increase in statistical
power. If, in contrast, there are large stable differences
among participants, then increasing the number of trials will
have a proportionally smaller impact on the error variance
and statistical power. Within-participant designs minimize
the impact of stable individual differences (by factoring out
differences across individuals in their average scores), and so
a greater proportion of the error variance will typically be
driven by the number of trials. This is just speculation at this
point, and additional research is needed to determine all the
factors that determine the extent to which increasing the
number of trials will increase statistical power.

4.4 | Conclusions

Collectively, these analyses demonstrate how several factors
have an impact on statistical power in ERP studies, including
number of trials, sample size, and effect magnitude, as well
as interactions among these factors. These results provide
clear evidence that there is no single answer to the question
of how many trials are needed in an ERP study, even in the
context of a single ERP component in a single experimental
paradigm. Indeed, the number of trials required to achieve
acceptable levels of statistical power varied substantially
depending on the sample size, the effect magnitude, and
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whether a within-participant or between-groups design was
used.

Although there is no simple answer to the question of
how many trials should be included in a given ERP experi-
ment, the present study does make it possible to draw two
practical conclusions (although simulations of other para-
digms and other components are necessary before we can be
fully certain that the present results are generalizable). First,
unless power is near floor or ceiling, increasing the number
of trials almost always produces appreciable increases in
power. Power does not saturate at 8 trials in an ERN experi-
ment or at 45 trials in an LRP experiment for the effect mag-
nitudes that most experiments are designed to detect. Thus, it
is usually worth increasing the number of trials if there is lit-
tle cost to doing so.

Second, the extent to which power can be increased by
increasing the number of trials appears to be greater in
within-participant designs than in between-groups designs.
In within-participant studies, it will often be worth the effort
to increase the number of trials (assuming that this does not
lead to fatigue or other factors that might decrease the quality
of the data). In between-groups studies, however, increasing
the number of trials may have only a modest impact, and
increasing the number of participants may be a more efficient
way to increase power. For example, we found that doubling
the number of trials in within-participant simulations more
than doubled the statistical power under many conditions,
but doubling the number of participants typically had a
smaller impact. By contrast, doubling the number of partici-
pants typically had a much larger effect than doubling the
number of trials in our between-groups simulations.

There are additional factors that were not examined in
this study that are also likely to influence the optimal number
of trials and sample size for a given study, including data
quality, experimental paradigm, and participant population.
Therefore, although our simulations provide estimates of the
power that would be achieved with a specific number of tri-
als, number of participants, and magnitude of effect, we cau-
tion researchers against extrapolating these specific values to
other studies that differ in data quality, paradigm, and partici-
pant population. For example, our participants were all
undergraduate students in a highly selective university, and
power would likely be lower for studies with a more hetero-
geneous population. Indeed, the present study should make it
clear that, despite an ever-expanding number of studies that
recommend specific numbers of trials for specific ERP com-
ponents, there is no single number that can answer this ques-
tion. Instead, the field needs a power calculator that can
indicate the expected power for a given study when given
the number of trials, number of participants, anticipated dif-
ference in amplitude between conditions or groups, and the
noise level of the raw EEG. We hope the present study is a
step in that direction.
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